

Published on Web 10/09/2004

Phosphaalkynes from Acid Chlorides via P for O(Cl) Metathesis: A Recyclable Niobium Phosphide (P³⁻) Reagent that Effects C-P Triple-Bond Formation

Joshua S. Figueroa and Christopher C. Cummins*

Room 2-227, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307

Received June 29, 2004; E-mail: ccummins@mit.edu

With the advent of niobaziridine-hydride Nb(H)(t-Bu(H)C= NAr)(N[Np]Ar)₂ (1, Np = neopentyl, Ar = $3,5-Me_2C_6H_3$)¹ has emerged new potential for P-atom transfer stemming from the ability of 1 to serve as a synthon for the reactive $Nb(N[Np]Ar)_3$ fragment.² As shown in Figure 1, white phosphorus (P_4) reacts with 1 to provide the μ -P₂ diniobium complex 2. The latter is cleaved reductively by sodium amalgam in THF to provide the $[Na(THF)_x]^+$ salt of the terminal niobium phosphide anion, [PNb(N[Np]Ar)₃]⁻ (3). The latter sequence (reactions i and ii in the synthetic cycle at left in Figure 1) was reported recently.^{1,2} Featured in the present communication is the fact that phosphide anion 3 serves to transform acid chlorides into corresponding phosphaalkynes via fourmembered metallacyclic intermediates, examples of which have been isolated and fully characterized. The transformation represents a new, mild method for access to phosphaalkynes, the high inherent reactivity of which has led to their implementation in organic,^{3,4} polymer,⁵ and coordination chemistry.⁶

Treatment of $[Na(THF)_x]$ with either pivaloyl chloride (*t*-BuC-(O)Cl) or 1-adamantoyl chloride (1-AdC(O)Cl) in cold THF solution elicits a color change from dark yellow to red over a period of 1.0 h. A standard workup followed by crystallization from Et₂O produced the cherry-red metallacyles, (t-BuC(O)P)Nb(N[Np]Ar)₃ (4-t-Bu) and (1-AdC(O)P)Nb(N[Np]Ar)₃ (4-1-Ad), in yields of 70 and 80%, respectively (reaction iii, Figure 1). Crystallographic structure determination of both derivatives 4⁷ revealed the presence of four-membered, Nb-P-C-O rings containing both Nb-P and Nb-O linkages (an ORTEP rendering of 4-1-Ad is included in Figure 1, top right). Whereas metallacycles 4 might be viewed as acylphosphinidenes⁸ (Nb=PC(=O)R) with bending at phosphorus⁹ and carbonyl oxygen coordination, we suggest that they are best formulated as heteroatom-substituted, niobacvclobutene (Nb-P= C(-O)R) complexes. Significant electronic rearrangement is thus brought about by acylation of the phosphide (M–P triple bond¹⁰) moiety.² Structural parameters in support of this formulation for 4-1-Ad include a C-O distance of 1.314(4) Å and a (short) P-C distance of 1.757(7) Å. The latter parameter is in the range typical for phosphaalkene P-C double bonds,11 while the former parameter exceeds the maximum value expected for a carbonyl group. Furthermore, the Nb-P distance of 2.491(2) Å is substantially longer than expected for a doubly bound terminal phosphinidene,⁹ more closely approximating a Nb-P single bond.¹²

The foregoing description of metallacycles **4** finds further support by way of spectroscopic signatures. In C₆D₆ solution, the ³¹P{¹H} NMR resonances for **4**-*t*-Bu (261 ppm) and **4**-1-Ad (258 ppm) are upfield of the chemical shift range characteristic of early transition metal, terminal phosphinidene complexes,⁹ while lying in a range typical of phosphaalkenes.¹¹ The ¹³C{¹H} NMR resonances of 260 ppm (**4**-*t*-Bu and **4**-1-Ad) for the metallacyclic carbon,¹³ with associated large ¹J_{PC} coupling constants of 113 Hz (**4**-*t*-Bu) and 107 Hz (4-1-Ad), are likewise strongly suggestive of the presence of P-C multiple bonding in these niobacycles. In addition, the increase in P-C bond order at the expense of carbonyl C=O bonding is reflected in the infrared spectrum of complexes 4, where carbonyl stretching vibrations in the usual energy range are not observed.¹⁴

Niobacycles 4 are valence-isoelectronic to the metallacyclic intermediates postulated by Chisholm in explanation of NW(O-t-Bu)3catalyzed nitrogen atom exchange between PhCN and MeC15N.15 Accordingly, metallacycles 4 have been found to readily undergo retro [2+2]-fragmentation in solution, leading smoothly to known phosphaalkynes³ 5 (t-BuCP or 1-AdCP) along with oxoniobium-(V) complex¹ **6** (reaction iv in Figure 1). Cherry red C_6D_6 solutions of either 4-t-Bu or 4-1-Ad left standing at room temperature are observed to pale in color, becoming yellow over several hours. Intermittent assay of these solutions by either ¹H or ³¹P{¹H} NMR spectroscopy revealed the disappearance of 4 concomitant with formation of oxo 6 and either t-BuCP (5-t-Bu) or 1-AdCP (5-1-Ad). Phosphaalkynes 5 are readily identified by their characteristic resonances^{3,16} in both ¹H and ³¹P{¹H} NMR spectra of the reaction mixtures, and the reaction can be conveniently monitored as a function of time.

Figure 1 includes (bottom, right) a stacked plot of the ${}^{31}P{}^{1}H{}$ NMR spectrum as a function of time corresponding to the 4-t-Bu \rightarrow 5-t-Bu + 6 conversion at 45 °C in C₆D₆ solution. Clearly evident is the smooth decay of the resonance at 261 ppm (4-t-Bu) simultaneous with the appearance of a resonance located at -64ppm (4-t-Bu, lit. (20 °C) = -69 ppm). At 45 °C, phosphaalkyne formation is complete in ca. 4 h, and it is noteworthy that no additional signals are observed in the ³¹P{¹H} NMR spectrum over the range +700 to -300 ppm during the reaction. Upon complete thermolysis, solutions containing equimolar amounts of 5-t-Bu and 6 stored at room temperature do not revert back to 4-t-Bu when monitored for several weeks. Thus, the retro [2 + 2]-fragmentation reaction is irreversible under the conditions probed. Preliminary kinetic studies for the 4-t-Bu \rightarrow 5-t-Bu + 6 reaction over the temperature range 308-338 K in C6D6 solution are consistent with a first-order fragmentation process. Activation parameters $\Delta H^{\dagger} =$ 24.9 ± 1.4 kcal/mol and $\Delta S^{\ddagger} = 2.4 \pm 4.3$ cal/mol K were obtained over this range, with the small entropic barrier adding weight to the notion of niobacycles 4 as intermediates on the phosphalkyne formation pathway, requiring little reorganization to reach the transition state for fragmentation.

For synthetic purposes, thermolysis of solutions containing **4**-*t*-Bu or **4**-1-Ad at 85 °C provides **6** and the corresponding phosphaalkyne within 30 min. After thermolysis of a solution containing **4**-*t*-Bu, colorless solutions of the pure phosphaalkyne, **5**-*t*-Bu, are obtained by simple vacuum transfer. The yield of **5**-*t*-Bu obtained in this fashion is greater than 90%, on scales from 20 to 200 mg of

Figure 1. Shown at left is a synthetic cycle for P₄ activation, terminal phosphide acylation, phosphaalkyne elimination, and reactive metal complex regeneration. At upper right is an enlarged 50% thermal ellipsoid rendering of intermediate 4-1-Ad; at lower right is shown ³¹P{¹H} NMR monitoring of the 4-t-Bu 5-t-Bu + 6 transformation. All line drawings of niobium complexes pictured above were generated from crystallographically determined structure coordinates.

4-t-Bu, as assayed by ¹H NMR integration relative to an internal standard. Golden yellow oxo $\mathbf{6}$ is recovered quantitatively after removal

of t-BuCP by vacuum transfer, and we find that it can be converted to the bistriflate complex Nb(OTf)₂(N[Np]Ar)₃ (7, reaction v) upon

treatment with 1.0 equiv of the potent electrophile triflic anhydride¹⁷

 $(Tf_2O, Tf = O_2SCF_3)$ in Et₂O. Bistriflate 7 is a bright orange, ether-

insoluble, crystalline solid isolated in 90% yield by filtration of

the reaction mixture. Whereas early transition metal, terminal oxo

moieties have been reported to be moderately nucleophilic,^{18,19} their smooth incorporation into a good leaving group has rarely been

documented.²⁰ Furthermore, bistriflate 7 serves as an ideal synthetic

precursor to niobaziridine-hydride 1. As indicated in Figure 1,

reduction of bistriflate 7 with magnesium anthracene²¹ (reaction

vi) proceeds with high-yield formation of 1, the complex being

readily separable from the magnesium triflate and anthracene

phosphaalkyne synthesis by metathetical P-atom transfer, and

deoxygenative recycling of the ultimate niobium oxo product. As

demonstrated previously for C-C²² and C-N^{15,23,24} triple bonds,

C-P triple-bond formation is now shown to be available via

metathetical exchange on a low-coordinate, d⁰ transition metal

Thus is completed a synthetic cycle for element (P₄) activation,

byproducts.

platform.

References

- Figueroa, J. S.; Cummins, C. C. J. Am. Chem. Soc. 2003, 125, 4020.
 Figueroa, J. S.; Cummins, C. C. Angew. Chem., Int. Ed. 2004, 43, 984.
- (3) Regitz, M.; Binger, P. Angew. Chem., Int. Ed. Engl. 1988, 27, 1484.
 (4) Märkl, G.; Seidl, E.; Trötsch, I. Angew. Chem., Int. Ed. Engl. 1983, 22, 879.
- (5) Loy, D. A.; Jamison, G. M.; McClain, M. D.; Alam, T. M. J. Polym. Sci. A 1999, 37, 129.
- (6) Nixon, J. F. Coord. Chem. Rev. 1995, 145, 201.
- Key metrical parameters for 4-1-Ad and 4-t-Bu are essentially identical. (8) Bohle, D. S.; Clark, G. R.; Rickard, C. E. F.; Roper, W. R. J. Organomet. Chem. 1988, 353, 355.
- (9) Cowley, A. H. Acc. Chem. Res. 1997, 30, 445.
- County, A. H. Act. Chem. Act. 1971, 50, 445.
 Johnson, B. P.; Balazs, G.; Scheer, M. Top. Curr. Chem. 2004, 232, 1.
 Regitz, M.; Scherer, O. J.; Eds. Multiple Bonds and Low Coordination in
- Phosphorus Chemistry; Thieme Verlag: New York, 1990.
- Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University (12)Press: Ithaca, NY, 1960; Chapter 11, p 405.
- (13) Synthesis and spectroscopic characterization of **4**-1-Ad utilizing 1-Ad¹³C-(Ŏ)Cl confirmed that the niobacyclic carbon atom originated from the acyl chloride carbonyl group. See Supporting Information.
- (14) Difference FTIR spectroscopy experiments on 4-1-Ad and its ¹³C-labeled isotopomer failed conclusively to establish the identity of the CO vibrations in these molecules
- (15) Chisholm, M. H.; Delbridge, E. E.; Kidwell, A. R.; Quinlan, K. B. Chem. Commun. 2003, 126
- (16) NMR parameters (¹H, ¹³C, and ³¹P) for phosphaalkynes 5 obtained here are in excellent agreement with the literature values. See Supporting Information
- (17) Baraznenok, I. L.; Nenajdenko, V. G.; Balenkova, E. S. Tetrahedron 2000, 56, 3077.
- (18) Freundlich, J. S.; Schrock R. R. Inorg. Chem. 1996, 35, 7459.
- (19) Cheng, J. Y. K.; Cheung, K.-K.; Chan, M. C. W.; Wong, K.-Y.; Che, C.-H. *Inorg. Chim. Acta* 1998, 272, 176.
 (20) Triflic anhydride has been used for conversion of Ph₃SbO to Ph₃Sb-(OTf)₂: Niyogi, D. G.; Singh, S.; Verma, R. D. J. Fluor. Chem. **1995**, 70, 237. See also ref 17.
- (21) Magnesium anthracene reductant was employed as its orange, crystalline, tris-THF complex: Freeman, P. K.; Hutchinson, L. L. J. Org. Chem. 1983, 48.879.
- (22) Schrock, R. R. *Chem. Rev.* 2002, 102, 145.
 (23) Clough, C. R. Greco, J. B.; Figueroa, J. S.; Diaconsecu, P. L.; Davis, W. M.; Cummins, C. C. *J. Am. Chem. Soc.* 2004, 126, 7742.
- (24) Brask, J. K.; Durà-Vilà, V.; Diaconescu, P. L.; Cummins, C. C. Chem. Commun. 2002, 902.

JA0461522

Acknowledgment. We gratefully thank the National Science Foundation (CHE-0316823) for financial support.

Supporting Information Available: Full experimental details for all new compounds, representative spectra for thermolysis reactions, kinetic data, and X-ray structural information for complexes 4-t-Bu, 4-1-Ad, and 7. This material is available free of charge via the Internet at http://pubs.acs.org.